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Introduction

Chronic rhinosinusitis (CRS) is caused by dysregulated immunologic responses to external stimuli, which
induce various inflammatory mediators from inflammatory cells including innate lymphoid cells (ILCs) and
T lymphocyte as well as epithelial cells. TSLP, IL-25 and IL-33, which are mainly secreted in the epithelial
cells in response to external stimuli, act on type 2 ILCs and Th2 cells, inducing IL-4, IL-5, and IL-13.
These inflammatory mediators are novel potential therapeutic targets for recalcitrant CRS. This lecture

reviews recent publications regarding innate cytokines and ILCs in CRS and nasal polyps.

Epithelial barrier function and epithelial cytokines

The epithelial barrier is the first line of defense; its breakdown can play a significant role in allowing
external stimuli to enter nasal tissue and provoke immune responses. Functional and mechanical defects
have been reported in nasal polyps (NP). Protease activated receptor (PAR) contributes to the production of
cytokines and chemokines from the epithelium in response to external stimuli such as bacteria, fungi, and
allergens.z’3 Epithelial barrier destroyed by protease activities enables allergens to pass physical epithelial
barriers, culminating in allergen sensitization.* It also signals epithelial cells to secrete innate cytokines, then,
facilitates the inducing of eosinophilic inflammation. Epithelial-derived innate cytokines such as IL-25, IL-33,
and TSLP may also participate in the evolution of NP’ IL-33 is secreted by immune cells such as

macrophages and dendritic cells as well as epithelial cells.’ Full-length IL-33 is extracellularly released when
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epithelial cells undergo necrosis and necroptosis via tissue damage caused by external stimuli. Biologically
active full-length IL-33 plays a role in mucosal inflammation recruiting neutrophils via chemokines including
CXCL-1 and CXCL-2." Of interest, a splice variant of IL-33 missing exons 3 and 4, which localizes to
the cytoplasm of epithelial cells, is actively released and strongly related to Th2 inflammation whereas full
length is not."” Several studies sought to investigate the expression and role of IL-33 in CRS. There have
been conflicting results on the expression of IL-33 in CRS. It was reported that IL-33 mRNA was highly
expressed in nasal mucosa but was not elevated in NP or other inflamed areas of the sinuses in
CRSwNP."'™™ A significant upregulation of ST2 expression was demonstrated in ethmoid mucosa from
CRSwNP but the concentration of IL-33 protein was not significantly different between nasal polyp and
control tissue."* Authors recently demonstrated IL-33 was upregulated in other CRS tissues compared to
eosinophilic NP and correlated with Th1/Th17 cytokines.6 IL-33 may contribute to inducing different types
of inflammation under various microenvironments.

IL-17E, also known as IL-25 is released by Th2 cells, mast cells, eosinophils as well as epithelial cells.
It is produced? and stored in the cytoplasm of the epithelial cells as results of external stimuli such as
protease, house dust mite, and allergen protease.15 IL-25 transcript levels are reported to increase in CRS

3,16 .
whereas one earlier

tissues including NP and correlated with disease severity and blood eosinophila,’
study reported that IL-25 and GATA-3 transcripts were decreased in NP versus control tissues." Additionally,
IL-17RB(+) polyp-derived Th2 cells were identified in NP, which co-expressed ST-2 and enhanced IL-5 and
IL-13 production in response to IL-25 and IL-33." Protein levels of IL-25 were up-regulated in non-

eosinophilic NP as well as eosinophilic NP.> '"*

Of note, the fact that IL-25, known as a cytokine involved
in diverse Th2-mediated diseases, is also correlated with inflammatory mediators involved in Thl and Th17
responses in Asian subjects suggests that it may play diverse roles in polypogenesis besides promoting Th2
inflammation.'®"® Blockade of IL-25 reduced the burden of NP in a mouse model of NP and represented a
potential novel therapeutic target.19

TSLP is well known to be induced in airway epithelial cells by viruses, TLR3 agonists, protease, and
pro-inflammatory cytokines.zo'23 IL-18 and TNF-a regulate TSLP transcript expression in an NF-«
B-dependent manner.”” Several researchers demonstrated that TSLP mRNA was overexpressed in eosinophilic

%26 TSLP induces the differentiation of naive T cells into effector

NP and associated with Th2 inflammation.
Th2 cells via enhancement of OX40L-OX40 axis on the interaction between dendritic cells and CD4 T
cells.”” TSLP protein is post-translationally modified by endogenous protease. The cleaved TSLP shows
higher activity, producing IL-5 when stimulated with IL-14, than the full-length form.”* Of interest, authors
recently demonstrated that TSLP production was induced by periostin in epithelial cells under Th2 high

inflammatory condition like eosinophilic NP.** Until now, TSLP has been consistently reported to have a

pathological role in eosinophilic NP unlike IL-25 and IL-33.

Aepsiny] 'l Aep



I 2018 KAAACI-EAAS—SERIN ASIA Joint Congress in conjunction with APAAACI

Innate lymphoid cells

Epithelial-derived cytokines such as IL-25, IL-33, and TSLP exert effects on type 2 innate lymphoid cells
(ILC2s).” Innate lymphoid cells (ILCs) are lymphocyte-like cells but lack markers of mature lymphocytes
and do not express allergen-specific T cell receptors. ILC2s are regarded as innate counterparts of Th2 cells
because both share the same functional module on the basis of their mutual production of signature
cytokines such as IL-5 and IL-13.° For example, GATA-3 is a key transcription factor that has parallel
roles in the development and function of both Th2 cells and ILC2s.” Moreover, STAT-6 is also an
important factor for Th2 polarization and has a role in the post-developmental role in ILC2s, though it is
not required for the development of ILC2s. Interestingly, IL-33- and IL-25-activated ILC2s can induce
eosinophilic airway inflammation accompanied by airway hyper-responsiveness even in recombination-
activating gene (Rag) knockout mice, which means ILC2s function independent of acquired immunity.az’ »
ILC2s are abundant and also have a close relationship with higher tissue and blood eosinophilia in NP,
clinically related to worsening nasal symptom scores and asthma comorbidity.“’ ¥ A recent study reported
that there was spatial co-localization between ILC2s and eosinophils in NP. A co-culture of eosinophils and
ILC2s augmented the activation of eosinophils and prolonged their survival, and in return, pre-activated
eosinophils enhanced IL-5 production of ILC2s in an IL-4 dependent manner.”® Of note, ILC2s have a
functional plasticity responsive to environmental cues including viral infection. Mouse ILC2s in the lung
undergo T-bet-mediated plasticity in response to infection including influenza virus, respiratory syncytial
virus, Haemophilus influenza, and Staphylococcal aureus.”” Human ILC2s can be converted into ILCls by
IL-12 and reversed by IL-4,° or into IFN-7 /IL-13 dual-producing ILCls in response to both IL-15 and
IL-12® T cells that are able to produce both IFN-7 and IL-13 induce enhanced airway hyper-responsiveness
compared to conventional Th2 cells.”’ Thus, ILC2 plasticity may contribute to disease heterogeneity which

might lead to recalcitrancy and exacerbations of inflammatory diseases.

Conclusion

With the advent of an era with biologicals, endotyping helps to select patients suitable for each biological
which can be a breakthrough in treating NP. Although targeting acquired immunity, for example T cell
subsets, has made an active progress, targeting epithelial cell-derived innate cytokines such as TSLP, IL-33,

and IL-25 may provide novel opportunities in managing allergic diseases including NP.
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